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Chemometrics in Spectroscopy Part 29 - Linearity in Calibration - Act
II Scene I

by H. Mark and J. Workman

When we published our recent column "Linearity in Calibration" (1) we didn't quite
realize what a firestorm we were going to ignite, although, truth be told, we did not
expect everybody to agree with us, either. But if so many actually took the trouble to
send their criticisms to us, then there must also be a large “silent majority” out there that
are upset, perhaps angry, and almost certainly misunderstanding what we said. We
prepared responses to these criticisms, but they became so lengthy that we could not
print them all in a single column, therefore they are spread out over the current column
and the next few. We will reprint the responses we received at an appropriate point,
followed by our comments about them.

Before doing that, however, let's discuss the question of the linearity of spectroscopic
data in general, first. There are a number of causes of non-linearity that most chemists
and spectroscopists are familiar with. Let us define our terms. When speaking of
"linearity" the meaning of the term depends on your point of view, and your interests.
An engineer is concerned, perhaps, with the linearity of detector response as a function
of incident radiant energy. To a chemist or spectroscopist, the interest is in the linearity
of an instrument's readings as a function of the concentration of an analyte in a set of
samples. In practice, this is generally interpreted to mean that when measuring a
transparent, non-scattering sample, the response of the instrument can be calculated
as some constant times the concentration of the analyte (or at least some function of
the instrument response can be calculated as a constant times some other function of
the concentration). In spectroscopic usage, that is normally interpreted as meaning the
condition described theoretically by Beer's Law, i.e., the instrument response function is
the negative exponential of the concentration:

I = k Io e-bC      (Eq 1)

where:
I = the radiation passing through the sample
k = the multiplying constant
Io = the radiation incident on the sample
b = the product of the pathlength and absorbtivity
C =  the concentration of the analyte

When other types of samples are measured, the resulting data is usually known to be
nonlinear (except possibly in a few special cases) so those measurements are of no
interest to us here. Thus, in practice, the invocation of "linearity" implies the assumption
that Beer's Law holds, therefore discussions of nonlinearity are essentially about those
phenomena that cause departures from Beer's law.
These include:



1) Chemical causes
     a) Hydrogen bonding
     b) Self-polymerization or condensation
     c) Interaction with solvent
     d) Self-interaction
2) Instrumental causes
     a) Non-linear detector
     b) Non-linear electronics
     c) Instrument bandwidth broad compared to absorbance band
     d) Stray light
     e) Non-collimated radiation

f) Excessive signal levels (saturation)

Most chemists and spectroscopists expect that in the absence of these distinct
phenomena causing non-linearity, Beer's Law provides an exact description of the
relationship between the absorbance and the analyte concentration. Unfortunately the
world is not so simple, and Beer's Law never holds exactly, EVEN IN PRINCIPLE. The
reason for this arises from thermodynamics.

Optical designers, and specialists in heat transfer calculations in the chemical
engineering and mechanical engineering sciences are familiar with the mathematical
construct known as The Equation of Radiative Transfer, although most chemists and
spectroscopists are not. The Equation of Radiative Transfer states that, disregarding
absorbance and scattering, in a lossless optical system:

     dE = I(λ) dλ dω da dt       (Eq 2)

where:
dE = the differential energy transferred in differential time dt
I(λ) = the optical intensity as a function of wavelength (i.e., the "spectrum")
dλ = the differential wavelength increment
dω = the differential optical solid angle the beam encompasses
da = the differential area occupied by the beam

     For a static (i.e., unvarying with time) system, we can recast equation 2 as:

     dE/dt = I(λ) dλ dω da     (Eq 3)

where dE/dt is the power in the beam. The application of these equations to heat
transfer problems is obvious, since by knowing the radiation characteristics of a source
and the geometry of the system, these equations allow an engineer, by integrating over
the differential terms of equation 2 or equation 3, to calculate the amount of energy
transferred by electromagnetic radiation from one place to another.

Furthermore, the first law of thermodynamics assures us that dE/dt will be constant
anywhere along the optical beam, since any change would require that the energy in
the beam be either increased or decreased, which would require that energy would be
either created or destroyed, respectively.



Less obviously, perhaps, the second law of thermodynamics assures us that the
intensity, I(λ), is also constant along the beam, for if this were not the case, then it
would be possible to focus all the radiation from a hot body onto a part of itself,
increasing the radiation flux onto that portion and raising its temperature of that portion
without doing work - a violation of the second law. The constancy of beam energy and
intensity has other consequences, some of which are familiar to most of us. If we solve
equation 3 for the product (dω da) we get:

     (dω da) = dE/dt x dλ/I(λ)      (Eq 4)

All the terms on the right-hand side of equation 4 are constants, therefore for any given
wavelength and source characteristics, the product (dω da) is a constant, and in an
optical system one can be traded off for the other. We are all familiar with this
characteristic of optical systems, in the magnification and demagnification of images
described by geometric optics. Whenever light is brought to a small focus (i.e., da
becomes small) the light converges on the focal point through a large range of angles
(i.e., dω becomes large) and vice versa. This trade-off of parameters is more obvious to
us when seen through the paradigm of geometric optics, but now we see that that is a
manifestation of the thermodynamics underlying it all.

We are also familiar with this effect in another context: in the fact that we cannot focus
light to an arbitrarily small focal point, but are limited to what we usually call the
"diffraction limit" of the radiation in the beam. This effect also comes out of equation 4,
since there is a physical (or perhaps a geometrical) limit to dω: dω cannot become
arbitrarily large, therefore da cannot become arbitrarily small. Again, we are familiar
with this effect by coming across it in another context, but we see that it is another
manifestation of the underlying thermodynamic reality.

Getting back to our main line of discussion: we can see from equation 2 (or equation 3)
that the differential terms must all have finite values. If any of the terms dλ, dω or da
were zero, then zero energy would pass through the system and we could not make
any measurements. One thing this tells us, of interest to us as spectroscopists, is that
we can never build an instrument with perfect resolution. The mechanistic
fundamentals (quantum broadening, Doppler broadening, etc.) have been extensively
discussed by one of our fellow columnists(2). This effect also manifests itself in the fact
that every technology has an "instrument function" that is convolved with the sample
spectrum, and each instrument function is explained by the paradigms of the
associated technology, but since "perfect" resolution means that dλ = 0, we see again
that this is another result of the same underlying thermodynamics.

More to the point of our discussion regarding non-linearity, however, is the fact that dω
cannot be zero. dω is related to the concept of "collimation": for a "perfectly collimated"
beam, dω = 0. But as we have just seen, such a beam can transfer zero energy; so just
as with dλ and da, a perfectly collimated beam has no energy.

Beer's law, on the other hand, is based on the assumption that there is a single
pathlength (normally represented by the variable b in the equation A=abc) for all rays
through the sample. In a real, physical, measurement system, this assumption is always
false, because of the fact that dω cannot be zero. As figure 1 shows, the actual rays



have pathlengths that range from b (for those rays that travel "straight through", i.e.,
normal to the sample surfaces) to b/cos(θmax) (for the rays at the most extreme
angles). We noted this effect above as item 2e in our list of sources of non-linearity,
and here we see the reason that there is fundamental limitation. Mechanistically, the
non-linearity is caused by the fact that the absorbance for the rays traveling normally =
abc, while for the extreme rays it is abc/cos(θmax). Thus the non-normal rays suffer
higher absorbance than the normal ones do, and the discrepancy (which equals abc(1-
1/cos(θ))) increases with increasing concentration.

When the medium is completely non-absorbing then the difference in pathlength does
not affect the measurement. When the sample has absorbance, however, it is clear
that ray I2 will have its intensity reduced more than ray I1, due to the longer pathlength.
Thus not all rays are reduced by a different amount and this leads to the non-linearity
of the measurement. Mathematically, this can be expressed by noting that the intensity
measured when a beam with a finite range of angles passes through a sample is:

             I Io e db= −∫ /cos( )
max

θ
θ

θ
0

     (Eq 6)

rather than the simpler form shown equation 1 (which, we remind the reader, only holds
true for “perfectly collimated” beams, which have zero energy).

In practice, of course, this effect is very small, normally much smaller than any of the
other sources of nonlinear behavior, and we are ordinarily safe in ignoring it, and calling
Beer's law behavior "linear" in the absence of any of the other known sources of non-
linear behavior. However, the point here is that this completes the demonstration of our
statement above, that Beer's law never exactly holds IN PRINCIPLE and that as
spectroscopists we never ever really work with perfectly linear data.



FIGURE 1
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